
Advanced object oriented programming Dr.Yusra Malik

1

UNested Classes
 In Java, just like methods, variables of a class too can have
another class as its member. Writing a class within another is allowed in
Java. The class written within is called the nested class, and the class
that holds the inner class is called the outer class.

USyntax

 Following is the syntax to write a nested class. Here, the
class Outer_Demois the outer class and the class Inner_Demo is the
nested class.

class Outer_Demo {
 class Nested_Demo {
 }
}
Nested classes are divided into two types −

• Non-static nested classes − These are the non-static members of a
class.

• Static nested classes − These are the static members of a class.

• UInner Classes (Non-static Nested Classes)
 Inner classes are a security mechanism in Java. We know a class
cannot be associated with the access modifier private, but if we have the
class as a member of other class, then the inner class can be made
private. And this is also used to access the private members of a class.

Inner classes are of three types depending on how and where you define
them. They are −

Advanced object oriented programming Dr.Yusra Malik

2

• Member Inner Class
• Method-local Inner Class
• Anonymous Inner Class

 Member Inner Class

 Creating an inner class is quite simple. You just need to write a class
within a class. Unlike a class, an inner class can be private and once you
declare an inner class private, it cannot be accessed from an object
outside the class.

Following is the program to create an inner class and access it. In the
given example, we make the inner class private and access the class
through a method.

Example

class Outer_Demo {
 int num;
 // inner class
 private class Inner_Demo {
 public void print() {
 System.out.println("This is an inner class");
 } }
 // Accessing he inner class from the method within
 void display_Inner() {
 Inner_Demo inner = new Inner_Demo();
 inner.print();
 }
}
 public class My_class {
 public static void main(String args[]) {
 // Instantiating the outer class
 Outer_Demo outer = new Outer_Demo();
 // Accessing the display_Inner() method.
 outer.display_Inner();
 }
}

 Output

 This is an inner class.

Advanced object oriented programming Dr.Yusra Malik

3

 UAccessing the Private Members
 As mentioned earlier , inner classes are also used to access the
private members of a class. Suppose, a class is having private members
to access them. Write an inner class in it, return the private members
from a method within the inner class, say, getValue(), and finally from
another class (from which you want to access the private members) call
the getValue() method of the inner class.

To instantiate the inner class, initially you have to instantiate the outer
class. Thereafter, using the object of the outer class, following is the way
in which you can instantiate the inner class.

 Outer_Demo outer = new Outer_Demo();
Outer_Demo.Inner_Demo inner = outer.new Inner_Demo();
The following program shows how to access the private members of a
class using inner class.

Example

 L
class Outer_Demo {
 // private variable of the outer class
 private int num = 175;
 // inner class
 public class Inner_Demo {
 public int getNum() {
 System.out.println("This is the getnum method of the inner class");
 return num;
 }
 }
}
public class My_class2 {
 public static void main(String args[]) {
 // Instantiating the outer class
 Outer_Demo outer = new Outer_Demo();
 // Instantiating the inner class
 Outer_Demo.Inner_Demo inner = outer.new Inner_Demo();
 System.out.println(inner.getNum());
 }
}

 Output

This is the getnum method of the inner class: 175

 Method-local Inner Class

http://tpcg.io/BIb2BX�

Advanced object oriented programming Dr.Yusra Malik

4

 In Java, we can write a class within a method and this will be a
local type. Like local variables, the scope of the inner class is restricted
within the method. A method-local inner class can be instantiated only
within the method where the inner class is defined. The following
program shows how to use a method-local inner class.

Example

public class Outerclass {
 // instance method of the outer class
 void my_Method() {
 int num = 23;
 // method-local inner class
 class MethodInner_Demo {
 public void print() {
 System.out.println("This is method inner class "+num);
 }
 } // end of inner class
 // Accessing the inner class
 MethodInner_Demo inner = new MethodInner_Demo();
 inner.print();
 }
 public static void main(String args[]) {
 Outerclass outer = new Outerclass();
 outer.my_Method();
 }
}

 Output

This is method inner class 23

 Anonymous Inner Class

 An inner class declared without a class name is known as
an anonymous inner class. In case of anonymous inner classes, we
Udeclare and instantiate U them at the same time. Generally, they are used
whenever you need to override the method of a class or an interface.
It is a type of inner class which:
1. has no name
2. can be instantiated only once
3. is usually declared inside a method or a code block ,a curly braces

ending with semicolon.
4. is accessible only at the point where it is defined.
5. does not have a constructor simply because it does not have a name

Advanced object oriented programming Dr.Yusra Malik

5

6. cannot be static
The syntax of an anonymous inner class is as follows −
USyntax
AnonymousInner an_inner = new AnonymousInner() {
 public void my_method() {

 }
};
The following program shows how to override the method of a class
using anonymous inner class.

UExample 1 U

abstract class AnonymousInner {
 public abstract void mymethod();
}
public class Outer_class {
 public static void main(String args[]) {
 AnonymousInner inner = new AnonymousInner() {
 public void mymethod() {
 System.out.println("This is an example of anonymous inner
class");
 }
 };
 inner.mymethod();
 }
}

 Output

This is an example of anonymous inner class

In the same way, you can override the methods of the concrete class as
well as the interface using an anonymous inner class.

UExample 2

Advanced object oriented programming Dr.Yusra Malik

6

// Java program to demonstrate accessing a inner class
 // outer class
class OuterClass
{
 // static member
 static int outer_x = 10;
 // instance(non-static) member
 int outer_y = 20;
 // private member
 private int outer_private = 30;
 // inner class
 class InnerClass
 {
 void display()
 {
 // can access static member of outer class
 System.out.println("outer_x = " + outer_x);
 // can also access non-static member of outer class
 System.out.println("outer_y = " + outer_y);
 // can also access private member of outer class
 System.out.println("outer_private = " + outer_private);
 }
 }
}
public class InnerClassDemo
{
 public static void main(String[] args)
 {
 // accessing an inner class
 OuterClass outerObject = new OuterClass();
 OuterClass.InnerClass innerObject = outerObject.newInnerClass();
 innerObject.display();
 }
}

Output:

outer_x = 10
outer_y = 20
outer_private = 30

 Anonymous Inner Class as Argument

Advanced object oriented programming Dr.Yusra Malik

7

 Generally, if a method accepts an object of an interface, an abstract
class, or a concrete class, then we can implement the interface, extend
the abstract class, and pass the object to the method. If it is a class, then
we can directly pass it to the method.

But in all the three cases, you can pass an anonymous inner class to the
method. Here is the syntax of passing an anonymous inner class as a
method argument –

obj.my_Method(new My_Class() {
 public void Do() {

 }
});
The following program shows how to pass an anonymous inner class as
a method argument.

Example

 // interface
interface Message {
 String greet();
}
public class My_class {
 // method which accepts the object of interface Message
 public void displayMessage(Message m) {
 System.out.println(m.greet() +
 ", This is an example of anonymous inner class as an argument");
 }
 public static void main(String args[]) {
 // Instantiating the class
 My_class obj = new My_class();
 // Passing an anonymous inner class as an argument
 obj.displayMessage(new Message() {
 public String greet() {
 return "Hello";
 }
 });
 }}

 Output

Hello, This is an example of anonymous inner class as an argument

Example:

http://tpcg.io/D5QuIX�

Advanced object oriented programming Dr.Yusra Malik

8

// Define an inner class within a for loop.
class Outer {
int outer_x = 100;
void test() {
 for(int i=0; i<10; i++) {
 class Inner {
 void display() {
 System.out.println("display: outer_x = " + outer_x); }
 }
 Inner inner = new Inner();
 inner.display();}
}}

class InnerClassDemo {
public static void main(String args[]) {
Outer outer = new Outer();
outer.test();}
}

The output from this version of the program is shown here.
display: outer_x = 100
display: outer_x = 100
display: outer_x = 100
display: outer_x = 100
display: outer_x = 100
display: outer_x = 100
display: outer_x = 100
display: outer_x = 100

Advanced object oriented programming Dr.Yusra Malik

9

• UStatic Nested Class
 A static inner class is a nested class which is a static member of the
outer class. It can be accessed without instantiating the outer class, using
other static members. Just like static members, a static nested class does
not have access to the instance variables and methods of the outer class.
The syntax of static nested class is as follows –

Syntax

class MyOuter {
 static class Nested_Demo {
 }
}
Instantiating a static nested class is a bit different from instantiating an
inner class. The following program shows how to use a static nested
class.

Example 1

public class Outer {

 static class Nested_Demo {

 public void my_method() {

 System.out.println("This is my nested class");

 }

 }

 public static void main(String args[]) {

 Outer.Nested_Demo nested = new Outer.Nested_Demo();

 nested.my_method();

 }

}

 Output

This is my nested class

Advanced object oriented programming Dr.Yusra Malik

10

Example 2

// Java program to demonstrate accessing
// a static nested class

// outer class
class OuterClass
{
 // static member
 static int outer_x = 10;
 // instance(non-static) member
 int outer_y = 20;
 // private member
 private static int outer_private = 30;
 // static nested class
 static class StaticNestedClass
 {
 void display()
 {
 // can access static member of outer class
 System.out.println("outer_x = " + outer_x);
 // can access display private static member of outer class
 System.out.println("outer_private = " + outer_private);
 // The following statement will give compilation error
 // as static nested class cannot directly access non-static membera
 // System.out.println("outer_y = " + outer_y);
 }
 }
}
public class StaticNestedClassDemo
{
 public static void main(String[] args)
 { // accessing a static nested class
 OuterClass.StaticNestedClass nestedObject = new OuterClass.StaticNestedClass();
 nestedObject.display();
 }
}

Output:

outer_x = 10

outer_private = 30

Advanced object oriented programming Dr.Yusra Malik

11

 Difference between static and inner(non-static nested) classes

 Static nested classes do not directly have access to other
members(non-static variables and methods) of the enclosing class
because as it is static, it must access the non-static members of its
enclosing class through an object. That is, it cannot refer to non-static
members of its enclosing class directly. Because of this restriction,
static nested classes are seldom used.

 Non-static nested classes (inner classes) has access to all

members(static and non-static variables and methods, including
private) of its outer class and may refer to them directly in the same
way that other non-static members of the outer class do.

Advanced object oriented programming Dr.Yusra Malik

12

UWrapper Classes in Java
3.4

 A Wrapper class is a class whose object wraps or contains a primitive
data types. When we create an object to a wrapper class, it contains a
field and in this field, we can store a primitive data types. In other words,
we can wrap a primitive value into a wrapper class object.

 Features of the Java wrapper Classes.
1. Wrapper classes convert numeric strings into numeric values.
2. The way to store primitive data in an object.
3. The valueOf() method is available in all wrapper classes except

Character
4. All wrapper classes have typeValue() method. This method returns

the value of the object as its primitive type.

 Need of Wrapper Classes
1. They convert primitive data types into objects. Objects are needed if

we wish to modify the arguments passed into a method (because
primitive types are passed by value).

2. The classes in java.util package handles only objects and hence
wrapper classes help in this case also.

3. Data structures in the Collection framework, such
as ArrayList and Vector, store only objects (reference types) and not
primitive types.

4. An object is needed to support synchronization in multithreading.

Primitive Data types and their Corresponding Wrapper class

https://www.geeksforgeeks.org/medium/�
https://www.geeksforgeeks.org/arraylist-in-java/�
https://www.geeksforgeeks.org/vector-vs-arraylist-java/�
http://cdncontribute.geeksforgeeks.org/wp-content/uploads/Wrapper-Class.png�

Advanced object oriented programming Dr.Yusra Malik

13

The following programs demonstrates how to use a numeric type wrapper
to encapsulate a value and then extract that value.

Example 1: Converting a primitive type to Wrapper object

public class JavaExample{
 public static void main(String args[]){
 //Converting int primitive into Integer object
 int num=100;
 Integer obj=Integer.valueOf(num);

 System.out.println(num+ " "+ obj);
 }
}
Output:

100 100

Example 2: Converting Wrapper class object to Primitive

public class JavaExample{
 public static void main(String args[]){
 //Creating Wrapper class object
 Integer obj = new Integer(100);

 //Converting the wrapper object to primitive
 int num = obj.intValue();

 System.out.println(num+ " "+ obj);
 }
}
Output:

100 100

 Autoboxing and Unboxing

UAutoboxingU: Automatic conversion of primitive types to the object of
their corresponding wrapper classes is known as autoboxing.
For example – conversion of int to Integer, long to Long, double to
Double etc.
 in the example 2, this line boxes the value 100 into an Integer:
Integer obj = new Integer(100);

Advanced object oriented programming Dr.Yusra Malik

14

UExample U:
// Java program to demonstrate Autoboxing
 import java.util.ArrayList;
class Autoboxing
{ public static void main(String[] args)
 { char ch = 'y';
 // Autoboxing- primitive to Character object conversion
 Character a = ch;
 ArrayList<Integer> arrayList = new ArrayList<Integer>();
 // Autoboxing because ArrayList stores only objects
 arrayList.add(25);
 // printing the values from object
 System.out.println(arrayList.get(0));
 }}
Output:

25

UUnboxingU: It is just the reverse process of autoboxing. Automatically
converting an object of a wrapper class to its corresponding primitive
type is known as unboxing. For example – conversion of Integer to int,
Long to long, Double to double etc. In example2, the program unboxes
the value in num with this statement:
 int num = obj.intValue();
Example:
// Java program to demonstrate Unboxing
import java.util.ArrayList;
 class Unboxing
{ public static void main(String[] args)
 { Character ch = 'f';
 // unboxing - Character object to primitive conversion
 char a = ch;
 ArrayList<Integer> arrayList = new ArrayList<Integer>();
 arrayList.add(24);
 // unboxing because get method returns an Integer object
 int num = arrayList.get(0);
 // printing the values from primitive data types
 System.out.println(num);
 }}
Output:

24

Advanced object oriented programming Dr.Yusra Malik

15

Example:
// Java program to demonstrate Wrapping and UnWrapping
// in Java Classes
class WrappingUnwrapping
{ public static void main(String args[])
 { // byte data type
 byte a = 1;
 // wrapping around Byte object
 Byte byteobj = new Byte(a);
 // int data type
 int b = 10;
 //wrapping around Integer object
 Integer intobj = new Integer(b);
 // float data type
 float c = 18.6f;
 // wrapping around Float object
 Float floatobj = new Float(c);
 // double data type
 double d = 250.5;
 // Wrapping around Double object
 Double doubleobj = new Double(d);
 // char data type
 char e='a';
 // wrapping around Character object
 Character charobj=e;
 // printing the values from objects
 System.out.println("Values of Wrapper objec(printin as objects)");
 System.out.println("Byte object byteobj: " + byteobj);
 System.out.println("Integer object intobj: " + intobj);
 System.out.println("Float object floatobj: " + floatobj);
 System.out.println("Double object doubleobj: " +doubleobj);
 System.out.println("Character object charobj: " + charobj);
 // objects to data types (retrieving data types from objects)
 // unwrapping objects to primitive data types
 byte bv = byteobj;
 int iv = intobj;
 float fv = floatobj;
 double dv = doubleobj;
 char cv = charobj;
 // printing the values from data types
 System.out.println("Unwrapped values (printing as data types)");
 System.out.println("byte value, bv: " + bv);
 System.out.println("int value, iv: " + iv);

Advanced object oriented programming Dr.Yusra Malik

16

 System.out.println("float value, fv: " + fv);
 System.out.println("double value, dv: " + dv);
 System.out.println("char value, cv: " + cv);
 }
}

Output:
Values of Wrapper objects (printing as objects)
Byte object byteobj: 1
Integer object intobj: 10
Float object floatobj: 18.6
Double object doubleobj: 250.5
Character object charobj: a
Unwrapped values (printing as data types)
byte value, bv: 1
int value, iv: 10
float value, fv: 18.6
double value, dv: 250.5
char value, cv: a

Advanced object oriented programming Dr.Yusra Malik

17

example:

Pass-by-reference and pass-by-value

public class IntegerWrapper {
 public int objectInt = 0;
}
public class Hello {
 static int primitiveInt = 0;
 static IntegerWrapper intWrapper = new IntegerWrapper();
 public static void main(String[] args) throws Exception {
 passBy(primitiveInt, intWrapper);
 System.out.println("primitiveInt = " + primitiveInt +
 "; intWrapper.objectInt = " + intWrapper.objectInt);
 }
 public static void passBy(int primitiveInt, IntegerWrapper intWrapper) {
 primitiveInt++;
 intWrapper.objectInt++;
 }
}

PassByTest with a return value for the passBy method

public class Hello {

 static int primitiveInt = 0;
 static IntegerWrapper intWrapper = new IntegerWrapper();

 public static void main(String[] args) {
 int a=passBy(primitiveInt, intWrapper);
 System.out.println("primitiveInt = " + a +
 "; intWrapper.objectInt = " + intWrapper.objectInt);
 }
 public static int passBy(int primitiveInt, IntegerWrapper intWrapper) {
 primitiveInt++;
 intWrapper.objectInt++;
 return primitiveInt;
 }
}

Advanced object oriented programming Dr.Yusra Malik

18

UMultithreading
 Before we talk about multithreading, let’s discuss threads. A
thread is a light-weight smallest part of a process that can run
concurrently with the other parts(other threads) of the same process.
Threads are independent because they all have separate path of execution
that’s the reason if an exception occurs in one thread, it doesn’t affect the
execution of other threads. All threads of a process share the common
memory. The process of executing multiple threads simultaneously is
known as multithreading.

Let’s summarize the discussion in points:
1. The main purpose of multithreading is to provide simultaneous
execution of two or more parts of a program to maximum utilize the CPU
time. A multithreaded program contains two or more parts that can run
concurrently. Each such part of a program called thread.
2. Threads are lightweight sub-processes, they share the common
memory space. In Multithreaded environment, programs that are
benefited from multithreading, utilize the maximum CPU time so that the
idle time can be kept to minimum.
3.A thread can be in one of the following states:
NEW – A thread that has not yet started is in this state.
RUNNABLE – A thread executing in the Java virtual machine is in this
state.
BLOCKED – A thread that is blocked waiting for a monitor lock is in this
state.
WAITING – A thread that is waiting indefinitely for another thread to
perform a particular action is in this state.
TIMED_WAITING – A thread that is waiting for another thread to perform
an action for up to a specified waiting time is in this state.
TERMINATED – A thread that has exited is in this state.
A thread can be in only one state at a given point in time.

Advanced object oriented programming Dr.Yusra Malik

19

UMultitasking vs Multithreading vs Multiprocessing vs parallel processing:
 If you are new to java you may get confused among these terms as
they are used quite frequently when we discuss multithreading. Let’s talk
about them in brief.
Multitasking: Ability to execute more than one task at the same time is
known as multitasking.
Multithreading: We already discussed about it. It is a process of
executing multiple threads simultaneously. Multithreading is also known
as Thread-based Multitasking.
Multiprocessing: It is same as multitasking, however in multiprocessing
more than one CPUs are involved. On the other hand one CPU is
involved in multitasking.
Parallel Processing: It refers to the utilization of multiple CPUs in a
single computer system.

UCreating a thread in Java
There are two ways to create a thread in Java:
1) By extending Thread class.
2) By implementing Runnable interface.
Before we begin with the programs(code) of creating threads, let’s have a
look at these methods of Thread class. We have used few of these
methods in the example below.

• getName(): It is used for Obtaining a thread’s name
• getPriority(): Obtain a thread’s priority
• isAlive(): Determine if a thread is still running
• join(): Wait for a thread to terminate
• run(): Entry point for the thread
• sleep(): suspend a thread for a period of time
• start(): start a thread by calling its run() method
Method 1: Thread creation by extending Thread class

Example 1:

class MultithreadingDemo extends Thread{
 public void run(){
 System.out.println("My thread is in running state."); }
 public static void main(String args[]){
 MultithreadingDemo obj=new MultithreadingDemo();
 obj.start(); } }
Output:
My thread is in running state.

Advanced object oriented programming Dr.Yusra Malik

20

Example 2:

class Count extends Thread
{
 Count()
 {
 super("my extending thread");
 System.out.println("my thread created" + this);
 start();
 }
 public void run()
 {
 try
 {
 for (int i=0 ;i<10;i++)
 {
 System.out.println("Printing the count " + i);
 Thread.sleep(1000);
 }
 }
 catch(InterruptedException e)
 {
 System.out.println("my thread interrupted");
 }
 System.out.println("My thread run is over");
 }
}
class ExtendingExample
{
 public static void main(String args[])
 {
 Count cnt = new Count();
 try
 {
 while(cnt.isAlive())
 {
 System.out.println("Main thread will be alive till the child thread
is live");
 Thread.sleep(1500);
 }
 }
 catch(InterruptedException e)
 { System.out.println("Main thread interrupted");}

Advanced object oriented programming Dr.Yusra Malik

21

 System.out.println("Main thread's run is over");}}
Output:

my thread createdThread[my runnable thread,5,main]
Main thread will be alive till the child thread is live
Printing the count 0
Printing the count 1
Main thread will be alive till the child thread is live
Printing the count 2
Main thread will be alive till the child thread is live
Printing the count 3
Printing the count 4
Main thread will be alive till the child thread is live
Printing the count 5
Main thread will be alive till the child thread is live
Printing the count 6
Printing the count 7
Main thread will be alive till the child thread is live
Printing the count 8
Main thread will be alive till the child thread is live
Printing the count 9
mythread run is over
Main thread run is over

Advanced object oriented programming Dr.Yusra Malik

22

Method 2: Thread creation by implementing Runnable Interface

A Simple Example

class MultithreadingDemo implements Runnable{
 public void run(){
 System.out.println("My thread is in running state.");
 }
 public static void main(String args[]){
 MultithreadingDemo obj=new MultithreadingDemo();
 Thread tobj =new Thread(obj);
 tobj.start();
 }
}
Output:

My thread is in running state.

Advanced object oriented programming Dr.Yusra Malik

23

Example Program 2:.

class Count implements Runnable
{
 Thread mythread ;
 Count()
 {
 mythread = new Thread(this, "my runnable thread");
 System.out.println("my thread created" + mythread);
 mythread.start();
 }
 public void run()
 {
 try
 {
 for (int i=0 ;i<10;i++)
 {
 System.out.println("Printing the count " + i);
 Thread.sleep(1000);
 }
 }
 catch(InterruptedException e)
 {
 System.out.println("my thread interrupted");
 }
 System.out.println("mythread run is over");
 }}
class RunnableExample
{
 public static void main(String args[])
 {
 Count cnt = new Count();
 try
 {
 while(cnt.mythread.isAlive())
 {
 System.out.println("Main thread will be alive till the child thread
is live");
 Thread.sleep(1500);
 }
 }
 catch(InterruptedException e)
 {

Advanced object oriented programming Dr.Yusra Malik

24

 System.out.println("Main thread interrupted");
 }
 System.out.println("Main thread run is over");
 }
}
Output:

my thread createdThread[my runnable thread,5,main]
Main thread will be alive till the child thread is live
Printing the count 0
Printing the count 1
Main thread will be alive till the child thread is live
Printing the count 2
Main thread will be alive till the child thread is live
Printing the count 3
Printing the count 4
Main thread will be alive till the child thread is live
Printing the count 5
Main thread will be alive till the child thread is live
Printing the count 6
Printing the count 7
Main thread will be alive till the child thread is live
Printing the count 8
Main thread will be alive till the child thread is live
Printing the count 9
mythread run is over
Main thread run is over

UThread priorities

• Thread priorities are the integers which decide how one thread should
be treated with respect to the others.

• Thread priority decides when to switch from one running thread to
another, process is called context switching

• A thread can voluntarily release control and the highest priority thread
that is ready to run is given the CPU.

• A thread can be preempted by a higher priority thread no matter what
the lower priority thread is doing. Whenever a higher priority thread
wants to run it does.

• To set the priority of the thread setPriority() method is used which is a
method of the class Thread Class.

Advanced object oriented programming Dr.Yusra Malik

25

In place of defining the priority in integers, we can
use MIN_PRIORITY, NORM_PRIORITY or MAX_PRIORITY.

Example:
// Demonstrate thread priorities.
class Priority implements Runnable {
 int count;
 Thread thrd;
 static boolean stop = false;
 static String currentName;
 /* Construct a new thread. Notice that this
 constructor does not actually start the
 threads running. */
 Priority(String name) {
 thrd = new Thread(this, name);
 count = 0;
 currentName = name;
 }
// Begin execution of new thread.
public void run() {
 System.out.println(thrd.getName() + " starting.");
 do {
 count++;
 if(currentName.compareTo(thrd.getName()) != 0) {
 currentName = thrd.getName();
 System.out.println("In " + currentName);
 }
 } while(stop == false && count < 10000000);
 stop = true;
 System.out.println("\n" + thrd.getName() +
 " terminating.");
 }
 }
class PriorityDemo {
 public static void main(String args[]) {
 Priority mt1 = new Priority("High Priority");
 Priority mt2 = new Priority("Low Priority");
 // set the priorities
 mt1.thrd.setPriority(Thread.NORM_PRIORITY+2);
 mt2.thrd.setPriority(Thread.NORM_PRIORITY-2);
 // start the threads
 mt1.thrd.start();
 mt2.thrd.start();

Advanced object oriented programming Dr.Yusra Malik

26

 try {
 mt1.thrd.join();
 mt2.thrd.join();
 }
 catch(InterruptedException exc) {
 System.out.println("Main thread interrupted.");
 } System.out.println("\nHigh priority thread counted to " +
 mt1.count);
 System.out.println("Low priority thread counted to " +
 mt2.count);
 }
}

Output:

High Priority starting.
In High Priority
Low Priority starting.
In Low Priority
In High Priority
High Priority terminating.
Low Priority terminating.
High priority thread counted to 10000000
Low priority thread counted to 8183

In this run, the high-priority thread got a vast majority of the CPU time.
Of course, the exact output produced by this program will depend upon
the speed of your CPU, the operating system you are using, and the
number of other tasks running in the system.

Methods: isAlive() and join()

• In all the practical situations main thread should finish last else other
threads which have spawned from the main thread will also finish.

• To know whether the thread has finished we can call isAlive() on the
thread which returns true if the thread is not finished.

• Another way to achieve this by using join() method, this method when
called from the parent thread makes parent thread wait till child thread
terminates.

• These methods are defined in the Thread class.
• We have used isAlive() method in the above examples too.

Advanced object oriented programming Dr.Yusra Malik

27

USynchronization

• Multithreading introduces asynchronous behavior to the programs. If
a thread is writing some data another thread may be reading the same
data at that time. This may bring inconsistency.

• When two or more threads need access to a shared resource there
should be some way that the resource will be used only by one
resource at a time. The process to achieve this is called
synchronization.

• To implement the synchronous behavior java has synchronous
method. Once a thread is inside a synchronized method, no other
thread can call any other synchronized method on the same object. All
the other threads then wait until the first thread come out of the
synchronized block.

• When we want to synchronize access to objects of a class which was
not designed for the multithreaded access and the code of the method
which needs to be accessed synchronously is not available with us, in
this case we cannot add the synchronized to the appropriate methods.
In java we have the solution for this, put the calls to the methods
(which needs to be synchronized) defined by this class inside a
synchronized block in following manner.

Synchronized(object)
{
 // statement to be synchronized
}

Please notice that constructors cannot be synchronized (using the
synchronized keyword with a constructor raises compiler error) because
only the thread which creates an instance has access to it while instance is
being constructed.
We have few methods through which java threads can communicate with
each other. These methods are wait(), notify(), notifyAll(). All these
methods can only be called from within a synchronized method.
1) To understand synchronization java has a concept of monitor. Monitor
can be thought of as a box which can hold only one thread. Once a thread
enters the monitor all the other threads have to wait until that thread exits
the monitor.
2) wait() tells the calling thread to give up the monitor and go to sleep
until some other thread enters the same monitor and calls notify().
3) notify() wakes up the first thread that called wait() on the same object.

Advanced object oriented programming Dr.Yusra Malik

28

notifyAll() wakes up all the threads that called wait() on the same object.
The highest priority thread will run first.

Example:

class TestSync implements Runnable {
 private int balance;
 public void run()
 for(int i = 0; i < 50; i++) {
 increment () ;
 System.out.println("balance is " + balance);
 }}
public synchrounaized void increment() {
int i = balance;
balance = i +1;
}}
public class TestSyncTest {
public static void main (String[] args) {
TestSync job = new TestSync();
Thread a = new Thread(job);
Thread b = new Thread(job) ;
a.start();
b.start();
}}

Advanced object oriented programming Dr.Yusra Malik

29

Graphical User Interface (GUI):

 The type of user interface we cover in this subject is called a
graphical user interface (GUI). In contrast, the user interface that uses
System.in and System.out exclusively is the called the non-GUI, or
console user interface. In Java, GUI-based programs are implemented by
using the classes from the standard javax.swing and java.awt packages.
We will refer to them collectively as GUI classes. When we need to
differentiate them, we will refer to the classes from javax.swing as Swing
classes and those from java.awt as AWT classes. Some of the GUI
objects from the javax.swing package are shown in Figure

Simple GUI I/O with JOptionPane:
 One of the easiest ways to provide a simple GUI-based input and
output is by using the JOptionPane class. For example, when we execute
the statement :

JOptionPane.showMessageDialog(null, "I Love Java");
the dialog appears on the center of the screen.

In a GUI environment, there are basically two types of windows:
1-a general-purpose frame
2- a special-purpose dialog.
 In Java, we use a JFrame object for a frame window and a JDialog
object for a dialog. The first arg ument to the showMessageDialog
method is a frame object that controls this dialog, and the second
argument is the text to display. In the example statement, we pass null,a
reserved word, meaning there is no frame object. If we pass null as the
first argument, the dialog appears on the center of the screen. If we pass a
frame object, then the dialog is positioned at the center of the frame.

Advanced object oriented programming Dr.Yusra Malik

30

Example:
/*Shows a Message Dialog*/
import javax.swing.*;
class TestShowMessageDialog {
public static void main(String[] args){
JFrame jFrame;
jFrame = new JFrame();
jFrame.setSize(400,300);
jFrame.setVisible(true);
JOptionPane.showMessageDialog(jFrame, "How are you?");
JOptionPane.showMessageDialog(null, "Good Bye");
}}

Notice that we are not creating an instance of the JDialog class directly
by ourselves. However, when we call the showMessageDialog method,
the JOptionPane class is actually creating an instance of JDialog
internally. Notice that showMessageDialog is a class method and
therefore we are not creating a JOptionPane object.
If we need a more complex dialog, then we create an instance of JDialog.
But for a simple display of text, calling the showMessageDialog class
method of JOptionPane would suffice. If we want to display multiple
lines of text, we can use a special character sequence \n to separate the
lines, as in
 JOptionPane.showMessageDialog(null, "one\ntwo\nthree");

We can also use the JOptionPane class for input by using its
showInputDialog method. For example, when we execute
 JOptionPane.showInputDialog(null, "Enter text:");
the dialog appears on the screen. To assign the name input to an input
string, we write:
String input;
input = JOptionPane.showInputDialog(null, "Enter text:");
 Unlike the Scanner class that supports different input methods for

specific data types, that is, nextInt and nextDouble, the
JOptionPane supports only a string.

An input dialog that appears as a result of calling the showInputDialog
class method of the JOptionPane class with “What is your name?” as the

method’s second argument

Advanced object oriented programming Dr.Yusra Malik

31

Customizing Frame Windows
 To create a customized user interface, we often define a subclass of
the JFrame class. The helper class MainWindow we used in the Sample
Development for example, is a subclass of the JFrame class. The
JFrame class contains the most basic functionalities to support features
found in any frame window, such as minimizing the window, moving the
window and resizing the window.
In writing practical programs, we normally do not create an instance of
the JFrame class because a JFrame object is not capable of doing
anything meaningful. For example, if we want to use a frame window for
a word processor, we need a frame window capable of allowing the user
to enter, cut, and paste text; change font; print text; and so forth. To
design such a frame window, we would define a subclass of the JFrame
class and add methods and data members to implement the needed
functionalities.
Before we show sample subclasses of JFrame, let’s first look at the
following program which displays a default JFrame object on the screen:
/*Displays a default JFrame window*/
import javax.swing.*;
class DefaultJFrame {
public static void main(String[] args){
JFrame defaultJFrame;
defaultJFrame = new JFrame();
defaultJFrame.setVisible(true);
}}
When this program is executed, a default JFrame object appears on the
screen. Since no methods (other than setVisible) to set the properties of
the JFrame object (such as its title, location, and size) are called, a very
small default JFrame object appears at the top left corner of the screen.

Now let’s define a subclass of the JFrame class and add some default
characteristics. To define a subclass of another class, we declare the
subclass with the reserved word extends. So, to define a class named
JFrameSubclass1 as a subclass of JFrame, we declare the subclass as

class JFrameSubclass1 extends JFrame {
...
}
For the JFrameSubclass1 class, we will add the following default
characteristics:
• The title is set to My First Subclass.
• The program terminates when the Close box is clicked.

Advanced object oriented programming Dr.Yusra Malik

32

• The size of the frame is set to 300 pixels wide and 200 pixels high.
• The frame is positioned at screen coordinate (150, 250).
All these properties are set inside the default constructor. To set the
frame’s title, we pass the title to the setTitle method. To set the frame’s
size, we pass its width and height to the setSize method. To position the
frame’s top left corner to the coordinate (x, y), we pass the values x and y
to the setLocation method. Finally, to terminate

import javax.swing.*;
class JFrameSubclass1 extends JFrame {
private static final int FRAME_WIDTH = 300;
private static final int FRAME_HEIGHT = 200;
private static final int FRAME_X_ORIGIN = 150;
private static final int FRAME_Y_ORIGIN = 250;
public JFrameSubclass1 () {
//set the frame default properties
setTitle ("My First Subclass");
setSize (FRAME_WIDTH, FRAME_HEIGHT);
setLocation (FRAME_X_ORIGIN, FRAME_Y_ORIGIN);
//register 'Exit upon closing' as a default close operation
setDefaultCloseOperation(EXIT_ON_CLOSE);}}
class TestJFrameSubclass {
public static void main(String[] args){
JFrameSubclass1 myFrame;
myFrame = new JFrameSubclass1();
myFrame.setVisible(true);
}}

Let’s define another subclass named JFrameSubclass2 that has a blue
background color instead. We will define this class as an instantiable

Advanced object oriented programming Dr.Yusra Malik

33

main class so we don’t have to define a separate main class. To make the
background appear in blue, we need to access the content pane of a
frame. A frame’s content pane designates the area of the frame that
excludes the title and menu bars and the border.
It is the area we can use to display the content (text, image, etc.). We
access the content pan of a frame by calling the frame’s getContentPane
method. And to change the background color to blue,we call the content
pane’s setBackground method. We carry out these operations in the
private changeBkColor method of JFrameSubclass2.

UExample U:
import javax.swing.*;
import java.awt.*;
class JFrameSubclass2 extends JFrame {
private static final int FRAME_WIDTH = 300;
private static final int FRAME_HEIGHT = 200;
private static final int FRAME_X_ORIGIN = 150;
private static final int FRAME_Y_ORIGIN = 250;
public JFrameSubclass2() {
//set the frame default properties
setTitle ("Blue Background JFrame Subclass");
setSize (FRAME_WIDTH, FRAME_HEIGHT);
setLocation (FRAME_X_ORIGIN, FRAME_Y_ORIGIN);
//register 'Exit upon closing' as a default close operation
setDefaultCloseOperation(EXIT_ON_CLOSE);
changeBkColor();
}
private void changeBkColor() {
Container c = getContentPane();
c.setBackground(Color.BLUE);
}}
public static void main(String[] args){
JFrameSubclass2 frame = new JFrameSubclass2();
frame.setVisible(true);}
Running the program will result in the frame appearing on the screen.

 GUI Programming Basics
 In this section, we will develop a sample frame window that illustrates
the fundamentals of GUI programming. The sample frame window has

Advanced object oriented programming Dr.Yusra Malik

34

two buttons labeled CANCEL and OK. When you click the CANCEL
button, the window’s title is changed to You clicked CANCEL.
Likewise, when you click the OK button, the window’s title is changed to
You clicked OK. Figure shows the window when it is first opened and
after the CANCEL button is clicked.
There are two key aspects involved in GUI programming. One is the
placement of GUI objects on the content pane of a frame, and the other is
the handling of events generated by these GUI objects. We will develop
the sample program in two steps.
First we will define a JFrame subclass called JButtonFrame to show
how the two buttons labeled OK and CANCEL are placed on the frame.
Then we will implement another subclass called JButtonEvents to show
how the button events are processed to change the frame’s title. Button
Placement The type of button we use here is called a pushbutton. we
will simply call them buttons. To use a button in a program,we create an
instance of the javax.swing.JButton class. We will create two buttons
and place them on the frame’s content pane in the constructor. Let’s name
the two buttons cancelButton and okButton. We declare and create these
buttons in the following manner:

import javax.swing.*;
JButton cancelButton, okButton;
cancelButton = new JButton("CANCEL");
okButton = new JButton("OK");
The text we pass to the constructor is the label of a button. After the
buttons are created, we must place them on the frame’s content pane.
There are two general approaches to placing buttons (and other types of
GUI objects) on a frame’s content pane, one that uses a layout manager
and another that does not. The layout manager for a container is an
object that controls the placement of the GUI objects. For example, the
simplest layout manager called FlowLayout places GUI objects in the
top-to-bottom, left-to-right order. If we do not use any layout manager,
then we place GUI objects by explicitly specifying their position and size
on the content pane. We call this approach absolute positioning.
In this section,we will use FlowLayout. To use the flow layout, we set the
 layout manager of a frame’s content pane by passing an instance of
FlowLayout to the setLayout method:

contentPane.setLayout(new FlowLayout());

Advanced object oriented programming Dr.Yusra Malik

35

After the layout manager is set, we add the two buttons to the content
pane, so they become visible when the frame is displayed on the screen:
 contentPane.add(okButton);
 contentPane.add(cancelButton);

Uexample U:

import javax.swing.*;
import java.awt.*;
class JButtonFrame extends JFrame {
private static final int FRAME_WIDTH = 300;
private static final int FRAME_HEIGHT = 200;
private static final int FRAME_X_ORIGIN = 150;
private static final int FRAME_Y_ORIGIN = 250;
private JButton cancelButton;
private JButton okButton;
public JButtonFrame() {
Container contentPane = getContentPane();
//set the frame properties
setSize (FRAME_WIDTH, FRAME_HEIGHT);
setResizable(false);
setTitle ("Program JButtonFrame");
setLocation (FRAME_X_ORIGIN, FRAME_Y_ORIGIN);
//set the layout manager
contentPane.setLayout(new FlowLayout());
//create and place two buttons on the frame's content pane
okButton = new JButton("OK");
contentPane.add(okButton);
cancelButton = new JButton("CANCEL");
contentPane.add(cancelButton);
//register 'Exit upon closing' as a default close operation
setDefaultCloseOperation(EXIT_ON_CLOSE);
} }
}
public static void main(String[] args){
JButtonFrame frame = new JButtonFrame();
frame.setVisible(true);
}
event-driven programming:
 To build an effective graphical user interface using objects from the
javax.swing and java.awt packages, we must learn a new style of
program control called event driven programming.

Advanced object oriented programming Dr.Yusra Malik

36

An event occurs when the user interacts with a GUI object.
For example, when you move the cursor, click on a button, or select a
menu choice, an event occurs. In event-driven programs, we program
objects to respond to these events by defi ning event-handling methods.
we will learn the fundamentals of event-driven programming. Since the
main objective is to teach the fundamentals of GUI and event-driven
programming and not to provide an exhaustive coverage of the Swing
classes, we will cover only the most common GUI objects.

Handling Button Events:
 Now let’s study how we process the button clicks. An action such as
clicking a button is called an event, and the mechanism to process the
events event handling. event handling is implemented by two types of
objects:event source objects and event listener objects.
 A GUI object, such as a button, where the event occurs is called an
event, or simply, the event source. We say an event source generates
events. So, for example, when the user clicks on a button, the
corresponding JButton object will generate an action event. When an
event is generated, the system notifies the relevant event listener objects.
An event listener object, or simply an event listener, is an object that
includes a method that gets executed in response to generated events. It is
possible for a single object to be both an event source and an event
listener.
 Among the many different types of events, the most common one

is called an action event. For example, when a button is clicked or
a menu item is selected, an event source will generate an action
event. For the generated events to be processed, we must associate,
or register, event listeners to the event sources. If the event sources
have no registered listeners, then generated events are simply
ignored (this is what happened in the JButtonFrame program).
For each type of event, we have a corresponding listener. For
example, we have action listeners for action events, window
listeners for window events, mouse listeners for mouse events, and
so forth. Event types other than action events are discussed later . If
we wish to process the action events generated by a button, then we
must associate an action listener to the button.

An object that can be registered as an action listener must be an instance
of a class that is declared specifically for the purpose. We call such class
an action listener class. For this sample program, let’s name the action
listener class ButtonHandler.
We will describe how to define the ButtonHandler class shortly. But first
we will show the step to register an instance of ButtonHandler as the

Advanced object oriented programming Dr.Yusra Malik

37

action listener of the two action event sources—okButton and
cancelButton—of the sample frame window.
An action listener is associated to an action event source by calling the
event source’s addActionListener method with this action listener as its
argument. For example, to register an instance of ButtonHandler as an
action listener of okButton and cancelButton, we can execute the
following code:

ButtonHandler handler = new ButtonHandler();
 okButton.addActionListener(handler);
 cancelButton.addActionListener(handler);

 Notice that we are associating a single ButtonHandler object as an
action listener of both buttons, because, although we can, it is not
necessary to associate two separate listeners, one for the OK button and
another for the CANCEL button. A single listener can be associated to
multiple event sources. Likewise, although not frequently used, multiple
listeners can be associated to a single event source.
 When an event source generates an event, the system checks for
matching registered listeners (e.g., for action events the system looks for
registered action listeners, for window events the system looks for
registered window listeners, and so forth). If there is no matching listener,
the event is ignored. If there is a matching listener, the system notifies the
listener by calling the listener’s corresponding method. In case of action
events, this method is actionPerformed. To ensure that the programmer
includes the necessary actionPerformed method in the action listener
class, the class must implement the ActionListener interface. The
ButtonHandler class, for example, must be defined in the following way:

class ButtonHandler implements ActionListener {
//data members and constructors come here
public void actionPerformed(ActionEvent evt){
}
//event-handling statements come here
}e listener can be associated t associated to a single event source
An argument to the actionPerformed method is an ActionEvent object
that represents an action event, and the ActionEvent class includes
methods to access the properties of a generated event. We want to change
the title of a frame to You clicked OK or You clicked CANCEL
depending on which button is clicked. This is done inside the
actionPerformed method. The general idea of the method is as follows:

public void actionPerformed(ActionEvent evt){
String buttonText= get the text of the event source;

Advanced object oriented programming Dr.Yusra Malik

38

JFrame frame= the frame that contains this event source;
frame.setTitle("You clicked " + buttonText);
}
The first statement retrieves the text of the event source (the text of the
okButton is the string OK and the text of the cancelButton is the string
CANCEL). We can do this in two ways.
The UfirstU way is to use the getActionCommand method of the action
event object evt. Using this method, we can retrieve the text of the
clicked button as
 String buttonText = evt.getActionCommand();
The Usecond U way is to use the getSource method of the action event object
evt. Using this method, we can retrieve the text of the clicked button as
 JButton clickedButton = (JButton) evt.getSource();
 String buttonText = clickedButton.getText();

/* Displays a frame with two buttons and associates an instance of
ButtonHandler to the two buttons*/
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
class JButtonEvents extends JFrame {
private static final int FRAME_WIDTH = 300;
private static final int FRAME_HEIGHT = 200;
class ButtonHandler implements ActionListener {
 public ButtonHandler() {
 public void actionPerformed(ActionEvent event){
 JButton clickedButton = (JButton) event.getSource();
 String buttonText = clickedButton.getText();
 frame.setTitle("You clicked " + buttonText);
 }
 }}

UOr U:

class JButtonFrameHandler extends JFrame implements ActionListener
{
private static final int FRAME_WIDTH = 300;
private static final int FRAME_HEIGHT = 200;
private static final int FRAME_X_ORIGIN = 150;
private static final int FRAME_Y_ORIGIN = 250;
private JButton cancelButton;

Advanced object oriented programming Dr.Yusra Malik

39

private JButton okButton;
public JButtonFrameHandler() {
Container c = getContentPane();
//set the frame properties
setSize (FRAME_WIDTH, FRAME_HEIGHT);
setResizable(false);
setTitle ("Program JButtonFrameHandler");
setLocation (FRAME_X_ORIGIN, FRAME_Y_ORIGIN);
//set the layout manager
c.setLayout(new FlowLayout());
//create and place two buttons on the frame's content pane
okButton = new JButton("OK");
c.add(okButton);
cancelButton = new JButton("CANCEL");
c.add(cancelButton);
//register this frame as an action listener of the two buttons
cancelButton.addActionListener(this);
okButton.addActionListener(this);
//register 'Exit upon closing' as a default close operation
setDefaultCloseOperation(EXIT_ON_CLOSE);
}
public void actionPerformed(ActionEvent event){
JButton clickedButton = (JButton) event.getSource();
String buttonText = clickedButton.getText();
setTitle("You clicked " + buttonText);
}}
public static void main(String[] args){
JButtonFrameHandler frame = new JButtonFrameHandler();
frame.setVisible(true);
}

Notice how we call the addActionListener method of cancelButton and
okButton. This frame object is the action event listener, so we pass it as
an argument to the method as
 cancelButton.addActionListener(this);
 okButton.addActionListener(this);
Likewise, because the actionPerformed method now belongs to this
frame class itself, we can call other methods of the frame class from the
actionPerformed method without dot notation. So the statement to
change the title is simply
 setTitle("You clicked " + buttonText);

Advanced object oriented programming Dr.Yusra Malik

40

Text-Related GUI Components
 In this section we will introduce three Swing GUI classes—JLabel,
JTextField, JPasswordField and JTextArea—that deal with text. The
first two deal with a single line of text and the last with multiple lines of
text. A TextField object allows the user to enter a single Like a JButton
object, an instance of JTextField and JPasswordField generates an
action events. A JTextField object generates an action event when the
user presses the Enter key while the object is active (it is active when you
see the vertical blinking line in it).
JLabel, on the other hand, does not generate any event. A JTextArea
object also generates events, specifically the types of events called text
events and document events. Handling of these events is more involved
than handling action events, so to keep the discussion manageable, we
won’t be processing the JTextArea events.
We will describe the JTextField class first. We set a JTextField object’s
size and position and register its action listener in the same way as we did
for the JButton class. To illustrate its use, we will modify the
JButtonFrameHandler by adding a single JTextField object. We will
call the new class TextFrame1. The effect of clicking the buttons
CANCEL and OK is the same as before. If the user presses the Enter key
while the JTextField object is active, then we will change the title to
whatever text is entered in this JTextField object. In the data declaration
part, we add JTextField inputLine; and in the constructor we create a
JTextField object and register the frame as its action listener:

public TextFrame1 {
...
inputLine = new JTextField();
inputLine.setColumns(22);
add(inputLine);
}
inputLine.addActionListener(this);
...
Notice the use of setColumns method instead of setSize in the earlier
examples. We do not use the setSize method to set the size of a text field.
The number we pass to the setColumns method does not necessarily
mean the number of characters visible on the text field because the default
font may be a variable-pitch font. If we set the font to a fixed-pitch font as
in:
 inputLine.setColumns(20);
 inputLine.setFont(new Font("Courier", Font.PLAIN, 14));
then 20 characters will be visible. Also, notice that the setColumns
method affects the number of characters visible by setting the size of the

Advanced object oriented programming Dr.Yusra Malik

41

text field. It does not affect the number of characters we can enter in the
text field. There is no fixed boundline of text, while a JLabel object is for
displaying uneditable text. on the number of characters we can enter.
When we enter more than the visible number of characters, then the text
will scroll to the left.
/* Displays a frame with two buttons, one text field and two labels*/
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
class TextFrame2 extends JFrame implements ActionListener {
...
private JLabel prompt;
private JLabel image;
public TextFrame2() {
...

image = new JLabel(new ImageIcon("cat.gif"));
image.setSize(50, 50);
contentPane.add(image);
prompt = new JLabel();
prompt.setText("Please enter your name");
prompt.setSize(150, 25);
contentPane.add(prompt);
...}
...}
public static void main(String[] args){
TextFrame2 frame = new TextFrame2();
frame.setVisible(true);
}
 Now we need to modify the actionPerformed method to handle both
the button click events and the Enter key events. We have three event
sources (two buttons and one textfield), so the first thing we must do in
the actionPerformed method is to determine the source. We will use the
instanceof operator to determine the class to which the event source
belongs. Here’s the general idea:
if (event.getSource() instanceof JButton){
//event source is either cancelButton
//or okButton
...
} else { //event source must be inputLine
...}
We use the getText method of JTextField to retrieve the text that the
user has entered. The complete method is written as

Advanced object oriented programming Dr.Yusra Malik

42

public void actionPerformed(ActionEvent event)
{
 if (event.getSource() instanceof JButton){
 JButton clickedButton = (JButton) event.getSource();
 String buttonText = clickedButton.getText();
 setTitle("You clicked " + buttonText);
 } else { //the event source is inputLine
 setTitle("You entered '" + inputLine.getText() + "'");
}}

 Notice that we can—but did not—write the else part as

 JTextField textField = (JTextField) event.getSource();
 setTitle("You entered '" + textField.getText() + "'");
because we know that the event source is inputLine in the else part. So
we wrote it more succinctly as
 setTitle("You entered '" + inputLine.getText() + "'");
Another approach to event handling is to associate a ButtonHandler
 to the two button event sources and a TextHandler (need to add this
new class) to the textfield event source.

UExample U:
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
class TextFrame1 extends JFrame implements ActionListener {
private static final int FRAME_WIDTH = 300;
private static final int FRAME_HEIGHT = 200;
private static final int FRAME_X_ORIGIN = 150;
private static final int FRAME_Y_ORIGIN = 250;
private JButton cancelButton;
private JButton okButton;
private JTextField inputLine;
public TextFrame1() {
Container contentPane;
//set the frame properties
setSize (FRAME_WIDTH, FRAME_HEIGHT);
setResizable(false);
setTitle ("Program Ch14SecondJFrame");
setLocation (FRAME_X_ORIGIN, FRAME_Y_ORIGIN);
contentPane = getContentPane();
contentPane.setLayout(new FlowLayout());
inputLine = new JTextField();
inputLine.setColumns(22);

Advanced object oriented programming Dr.Yusra Malik

43

contentPane.add(inputLine);
inputLine.addActionListener(this);
//create and place two buttons on the frame
okButton = new JButton ("OK");
contentPane.add(okButton);
cancelButton = new JButton ("CANCEL");
contentPane.add(cancelButton);
//register this frame as an action listener of the two buttons
cancelButton.addActionListener(this);
okButton.addActionListener(this);
//register 'Exit upon closing' as a default close operation
setDefaultCloseOperation(EXIT_ON_CLOSE);
}
public void actionPerformed(ActionEvent event){
if (event.getSource() instanceof JButton){
JButton clickedButton = (JButton) event.getSource();
String buttonText = clickedButton.getText();
setTitle("You clicked " + buttonText);
} else { //the event source is inputLine
setTitle("You entered '" + inputLine.getText() + "'");
}}
public static void main(String[] args){
TextFrame1 frame = new TextFrame1();
frame.setVisible(true);
}

UJPasswordField :

EXAMPLE:
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class ButtonTest extends JFrame implements
ActionListener
{
 JPasswordField password;
 JButton ok, clear, exit;
 public ButtonTest()
 {
 super("Button Test");
 Container c = getContentPane();
 c.setLayout(new FlowLayout());
 c.add(new JLabel("Enter Password"));

Advanced object oriented programming Dr.Yusra Malik

44

 password = new JPasswordField(20);
 c.add(password);
 ok = new JButton("OK");
 ok.addActionListener(this);
 c.add(ok);
 clear = new JButton("Clear");
 clear.addActionListener(this);
 c.add(clear);
 exit = new JButton("Exit");
 exit.addActionListener(this);
 c.add(exit);
 setSize(350, 100);
 setVisible(true);
 }
 public void actionPerformed(ActionEvent event)
 {
 if (event.getSource() == exit)
 System.exit(0);
 else
 if (event.getSource() == clear)
 password.setText(" ");
 else
 { // ok
 if(password.getText().equals("Sudan"))
 JOptionPane.showMessageDialog(this, "Password is correct")
 else
 JOptionPane.showMessageDialog(this, "Sorry..wrong password");
 }
 }
 public static void main(String args[])
 { new ButtonTest();}
 }

Output:

Advanced object oriented programming Dr.Yusra Malik

45

UTextArea:

 Now let’s create the example by using a JTextArea object. We will
call the sample class TextFrame3. In this sample program, we will add
two buttons labeled ADD and CLEAR, one text field, and one text area
to a frame. When a text is entered in the text field and the Enter (Return)
key is pressed or the ADD button is clicked, the entered text is added to
the list shown in the text area. Figure down shows the state of this frame
after six words are entered.

We declare a JTextArea object textArea in the data member section as
private JTextArea textArea; and add the statements to create it inside the
constructor as:
textArea = new JTextArea();
textArea.setColumns(22);
textArea.setRows(8);
textArea.setBorder(BorderFactory.createLineBorder(Color.RED));
textArea.setEditable(false);
contentPane.add(textArea);
By default, unlike the single-line JTextField, the rectangle that indicates
the boundary of a JTextArea object is not displayed on the frame. We
need to create the border for a JTextArea object explicitly. The easiest
way to do so is to call one of the class methods of the BorderFactory
class. In the example, we called the createLineBorder method with a
Color object as its argument. We passed Color.RED so the red rectangle
is displayed. The createLineBorder method returns a properly created
Border object, and we pass this Border object to the setBorder method
of the text area object. There are other interesting borders you might want
to try. The API documentation of the BorderFactory class records more
options and variations. In the sample frame, we do not want the user to
edit the text displayed in the text area, so we disable editing by the
statement textArea.setEditable(false);

UExample U:

/*Displays a frame with two buttons, one text field, and one text area*/
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
class TextFrame3 extends JFrame implements ActionListener {
private static final int FRAME_WIDTH = 300;
private static final int FRAME_HEIGHT = 250;

Advanced object oriented programming Dr.Yusra Malik

46

private static final int FRAME_X_ORIGIN = 150;
private static final int FRAME_Y_ORIGIN = 250;
private static final String EMPTY_STRING = "";
private static final String NEWLINE =
System.getProperty("line.separator");
private JButton clearButton;
private JButton addButton;
private JTextField inputLine;
private JTextArea textArea;
public TextFrame3() {
Container contentPane;
//set the frame properties
setSize (FRAME_WIDTH, FRAME_HEIGHT);
setResizable(false);
setTitle ("Program TextFrame3");
setLocation (FRAME_X_ORIGIN, FRAME_Y_ORIGIN);
contentPane = getContentPane();
contentPane.setLayout(new FlowLayout ());
textArea = new JTextArea();
textArea.setColumns(22);
textArea.setRows(8);
textArea.setBorder(BorderFactory.createLineBorder(Color.RED));
textArea.setEditable(false);
contentPane.add(textArea);
inputLine = new JTextField();
inputLine.setColumns(22);
contentPane.add(inputLine);
inputLine.addActionListener(this);
//create and place two buttons on the frame
addButton = new JButton ("ADD");
contentPane.add(addButton);
clearButton = new JButton ("CLEAR");
contentPane.add(clearButton);
//register this frame as an action listener of the two buttons
clearButton.addActionListener(this);
addButton.addActionListener(this);
//register 'Exit upon closing' as a default close operation
setDefaultCloseOperation(EXIT_ON_CLOSE);
}
public void actionPerformed(ActionEvent event){
if (event.getSource() instanceof JButton){
JButton clickedButton = (JButton) event.getSource();
if (clickedButton == addButton){

Advanced object oriented programming Dr.Yusra Malik

47

addText(inputLine.getText());
} else {
clearText();
}
} else { //the event source is inputLine
addText(inputLine.getText());
}}
private void addText(String newline){
textArea.append(newline + NEWLINE);
inputLine.setText("");
}
private void clearText() {
textArea.setText(EMPTY_STRING);
inputLine.setText(EMPTY_STRING); }}
 public static void main(String[] args){
TextFrame3 frame = new TextFrame3();
frame.setVisible(true);
}

 To add a text to the text area, we use the append method. Notice that we
cannot use the setText method of JTextArea here because it will replace
the old content with the new text. What we want here is to add new text
to the current content. Also, since we need to add new text on a separate
line, we need to output the new-line control character \n. Here’s the basic
idea for adding new text to the text area object textArea:
 String enteredText = inputLine.getText();
 textArea.append(enteredText + "\n");
Because the actual sequence of characters to separate lines is dependent
on the operating systems, if we want to maintain consistent behavior
across all operating systems, it is best to not use a fixed character such as
\n. Instead, we should call the getProperty method of the System class,
passing the string line.separator as anargument, to get the actual
sequence of characters used by the operating system on which the
program is being executed. We can define a class constant as :
Private static final String NEWLINE=System.getProperty("line.separator");
and use it in the program as:
textArea.append(enteredText + NEWLINE);

Advanced object oriented programming Dr.Yusra Malik

48

Using a JScrollPane to Add Scroll Bars Automatically
When we run the TextFrame3 class and add more rows (lines) of text
than the number of rows set by calling the setRows method, what
happens? The height of the text area gets taller. Likewise, the text area
expands horizontally when we enter a line longer than the specified
width. This is not a desired behavior. The easiest way to handle the
situation is to wrap the text area with an instance of
javax.swing.JScrollPane that adds the vertical and horizontal scroll bars
when necessary.
In the original TextFrame3 class, this is what we did to create and set the
JTextArea object:
textArea = new JTextArea();
textArea.setColumns(22);
textArea.setRows(8);
textArea.setBorder(BorderFactory.createLineBorder(Color.RED));
textArea.setEditable(false);
contentPane.add(textArea);
To add scroll bars that will appear automatically when needed, we replace
the last statement above with the following:
JScrollPane scrollText= new JScrollPane(textArea);
scrollText.setSize(200, 135);
contentPane.add(scrollText);
Notice that the properties, such as the border and bounds, of the
JScrollPane object are set, no longer the properties of the JTextArea.
Figure shows a sample TextFrame3 object when the JScrollPane class
is used.

Advanced object oriented programming Dr.Yusra Malik

49

UJComboBox
 The JComboBox class presents a combo box. This class is similar to
the JRadioButton class in that it also allows the user to select one item
from a list of possible choices. The difference between the two lies in
how the choices are presented to the user. Another name for a combo box
is a drop-down list, which is more descriptive of its interaction style.
We can construct a new JComboBox by passing an array of String
objects, for example,
String[] comboBoxItem= {"Java", "C++", "Smalltalk", "Ada"};
JComboBox comboBox = new JComboBox(comboBoxItem);
A JComboBox object generates both action events and item events. An
action event is generated every time a JComboBox is clicked (note it is
not that common to process action events of JComboBox). Every time an
item different from the currently selected item is selected, an item event
is generated and the itemStateChanged method is called twice. The first
time is for the deselection of the currently selected item, and the second is
for the selection of the new item. Notice that when the same item is
selected again, no item event is generated.
To find out the currently selected item, we call the getSelectedItem
method of JComboBox. Because the return type of this method is
Object, we must typecast to the correct type. For this example, items are
String objects, so we write
String selection = (String) comboBox.getSelectedItem();
Also, we can call the getSelectedIndex method to retrieve the position of
the selected item. The first item in the list is at position 0.
Here’s the JComboBoxSample class:

UExample U:
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
class JComboBoxSample extends JFrame implements ActionListener,
ItemListener {
private static final int FRAME_WIDTH = 300;
private static final int FRAME_HEIGHT = 200;
private static final int FRAME_X_ORIGIN = 150;
private static final int FRAME_Y_ORIGIN = 250;
private JComboBox comboBox;
public JComboBoxSample() {
Container contentPane;
JPanel comboPanel, okPanel;
JButton okButton;
String[] comboBoxItem = {"Java", "C++", "Smalltalk", "Ada"};

Advanced object oriented programming Dr.Yusra Malik

50

//set the frame properties
setSize (FRAME_WIDTH, FRAME_HEIGHT);
setTitle ("Program JComboBoxSample");
setLocation(FRAME_X_ORIGIN, FRAME_Y_ORIGIN);
contentPane = getContentPane();
contentPane.setBackground(Color.WHITE);
contentPane.setLayout(new BorderLayout());
//create and place a combo box
comboPanel = new JPanel(new FlowLayout());
comboPanel.setBorder(BorderFactory.createTitledBorder("Pick your favorite"));
comboBox = new JComboBox(comboBoxItem);
comboBox.addItemListener(this);
comboPanel.add(comboBox);
//create and place the OK button
okPanel = new JPanel(new FlowLayout());
okButton = new JButton("OK");
okButton.addActionListener(this);
okPanel.add(okButton);
contentPane.add(comboPanel, BorderLayout.CENTER);
contentPane.add(okPanel, BorderLayout.SOUTH);
//register 'Exit upon closing' as a default close operation
setDefaultCloseOperation(EXIT_ON_CLOSE);
}
public void actionPerformed(ActionEvent event){
String favorite;
int loc;
favorite = (String) comboBox.getSelectedItem();
loc = comboBox.getSelectedIndex();
JOptionPane.showMessageDialog(this, "Currently selected item '" +
favorite + "' is at index position " + loc);
}
public void itemStateChanged(ItemEvent event){
 String state;
 if (event.getStateChange() == ItemEvent.SELECTED){
 state = "is selected ";}
 else {
 state = "is deselected ";}
JOptionPane.showMessageDialog(this, "JComboBox Item '" +
event.getItem() +
"' " + state);
}}
}

Advanced object oriented programming Dr.Yusra Malik

51

public static void main(String[] args){
JComboBoxSample frame = new JComboBoxSample();
frame.setVisible(true);
}

URadioButton

UExample U:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class RadioButtonTest extends JFrame implements ItemListener
{
 JLabel text;
 JRadioButton plain, bold, italic, capital, small;
 ButtonGroup styleGroup , caseGroup;
 public RadioButtonTest()
 {
 super("Radio Buttons");
 Container c= getContentPane();
 c.setLayout(new FlowLayout());
 styleGroup = new ButtonGroup();
 plain = new JRadioButton("Plain", true);
 plain. addItemListener(this);
 styleGroup.add(plain);
 c.add(plain);
 bold = new JRadioButton("Bold", false);
 bold.addItemListener(this);
 styleGroup.add(bold);
 italic = new JRadioButton("italic", false);
 italic.addItemListener(this);
 styleGroup.add(italic);
 c.add(italic);
 caseGroup = new ButtonGroup();

Advanced object oriented programming Dr.Yusra Malik

52

 capital = new JRadioButton("Capital", true);
 capital.addItemListener(this);
 caseGroup.add(capital);
 c.add(capital);
 small = new JRadioButton("small", false);
 small.addItemListener(this);
 caseGroup.add(small);
 c.add(small);
 text = new JLabel("Radio Buttons");
 c.add(text);
 setSize(180, 140);
 setVisible(true);
 }
 public void itemStateChanged(ItemEvent event)
 {
 if(event.getSource() == plain)
 text.setFont(new Font("serif", Font.PLAIN, 14));
 if (event.getSource() == bold)
 text.setFont(new Font("serif", Font.BOLD, 14));
 if (event.getSource() == italic)
 text.setFont(new Font("serif", Font.ITALIC, 14));
 if (event.getSource() == capital)
 text.setText("RADIO BUTTONS");
 if (event.getSource() == small)
 text.setText("radio buttons");
 }
 public static void main(String args[])
 {
 new RadioButtonTest();
 }
}

Advanced object oriented programming Dr.Yusra Malik

53

Umenu
 Practical programs with a graphical user interface will almost always
support menus. In this section we will describe how to display menus and
process menu events by using JMenu, JMenuItem, and JMenuBar
from the javax.swing package.
Let’s write a sample code to illustrate the display of menus and the
processing of menu item selections. We will create two menus, File and
Edit, with the following menu items:

If the menu item Quit is selected, then we terminate the program. When a
menu item other than Quit is selected, we print a message that identifies
the selected menu item, for example, Menu item 'New' is selected Figure
shows a JMenuFrame when it is first opened and after the menu choice
Save is selected.
One possible sequence of steps to create and add menus is this:
1. Create a JMenuBar object and attach it to a frame.
2. Create a JMenu object.
3. Create JMenuItem objects and add them to the JMenu object.
4. Attach the JMenu object to the JMenuBar object.

UExample U:
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
class JMenuFrame extends JFrame implements ActionListener {
private static final int FRAME_WIDTH = 300;
private static final int FRAME_HEIGHT = 250;
private static final int FRAME_X_ORIGIN = 150;
private static final int FRAME_Y_ORIGIN = 250;
private JLabel response;

Advanced object oriented programming Dr.Yusra Malik

54

private JMenu fileMenu;
private JMenu editMenu;
public JMenuFrame(){
Container contentPane;
//set the frame properties
setTitle ("JMenuFrame");
setSize (FRAME_WIDTH, FRAME_HEIGHT);
setResizable(false);
setLocation (FRAME_X_ORIGIN, FRAME_Y_ORIGIN);
contentPane = getContentPane();
contentPane.setLayout(new FlowLayout());
//create two menus and their menu items
createFileMenu();
createEditMenu();
//and add them to the menu bar
JMenuBar menuBar = new JMenuBar();
setJMenuBar(menuBar);
menuBar.add(fileMenu);
menuBar.add(editMenu);
//create and position response label
response = new JLabel("Hello, this is your menu tester.");
response.setSize(250, 50);
contentPane.add(response);
setDefaultCloseOperation(EXIT_ON_CLOSE);
}
public void actionPerformed(ActionEvent event){
String menuName;
menuName = event.getActionCommand();
if (menuName.equals("Quit")) {
System.exit(0);
} else {
response.setText("Menu Item '" + menuName + "' is selected.");
}
}
private void createFileMenu() {
JMenuItem item;
fileMenu = new JMenu("File");
item = new JMenuItem("New"); //New
item.addActionListener(this);
fileMenu.add(item);
item = new JMenuItem("Open"); //Open...
item.addActionListener(this);
fileMenu.add(item);

Advanced object oriented programming Dr.Yusra Malik

55

item = new JMenuItem("Save"); //Save
item.addActionListener(this);
fileMenu.add(item);
item = new JMenuItem("Save As..."); //Save As...
item.addActionListener(this);
fileMenu.add(item);
fileMenu.addSeparator(); //add a horizontal separator line
item = new JMenuItem("Quit"); //Quit
item.addActionListener(this);
fileMenu.add(item);
}
}}

private void createEditMenu() {
JMenuItem item;
editMenu = new JMenu("Edit");
item = new JMenuItem("Cut"); //Cut
item.addActionListener(this);
editMenu.add(item);
item = new JMenuItem("Copy"); //Copy
item.addActionListener(this);
editMenu.add(item);
item = new JMenuItem("Paste"); //Paste
item.addActionListener(this);
editMenu.add(item);
}}
public static void main(String[] args){
JMenuFrame frame = new JMenuFrame();
frame.setVisible(true);
}

If the size of text for the response label is too small, then we can make it
bigger by including the following statement in the constructor:
response.setFont(new Font("Helvetica", /*font name*/ Font.BOLD, /*font style*/16)); /*font size*/

Advanced object oriented programming Dr.Yusra Malik

56

UGeneric:

 It would be nice if we could write a single sort method that could
sort the elements in an Integer array, a String array, or an array of any
type that supports ordering.
Java Generic methods and generic classes enable programmers to
specify, with a single method declaration, a set of related methods, or
with a single class declaration, a set of related types, respectively.
Generics also provide compile-time type safety that allows programmers
to catch invalid types at compile time.

 What Are Generics?
 At its core, the term generics means parameterized types. Parameterized
types are important because they enable you to create classes, interfaces,
and methods in which the type of data upon which they operate is
specified as a parameter. Using generics, it is possible to create a single
class, for example, that automatically works with different types of data.
A class, interface, or method that operates on a parameterized type is
called generic, as in generic class or generic method.
It is important to understand that Java has always given you the ability to
create generalized classes, interfaces, and methods by operating through
references of type Object. Because Object is the superclass of all other
classes, an Object reference can refer to any type object. Thus, in pre-
generics code, generalized classes, interfaces, and methods used Object
references to operate on various types of objects. The problem was that
they could not do so with type safety.
Generics add the type safety that was lacking. They also streamline the
process, because it is no longer necessary to explicitly employ casts to
translate between Object and the type of data that is actually being
operated upon. With generics, all casts are automatic and implicit. Thus,
generics expand your ability to reuse code and let you do so safely and
easily.

 Generics Work Only with Objects:
 When declaring an instance of a generic type, the type argument
passed to the type parameter must be a class type. You cannot use a
primitive type, such as int or char. For example, with Gen, it is possible
to pass any class type to T, but you cannot pass a primitive type to a type
parameter. Therefore, the following declaration is illegal:

Gen<int> strOb = new Gen<int>(53); // Error, can't use primitive type

Advanced object oriented programming Dr.Yusra Malik

57

Of course, not being able to specify a primitive type is not a serious
restriction because you can use the type wrappers (as the preceding
example did) to encapsulate a primitive type.
Further, Java’s autoboxing and auto-unboxing mechanism makes the use
of the type wrapper transparent.

 Generic Methods:

 You can write a single generic method declaration that can be called
with arguments of different types. Based on the types of the arguments
passed to the generic method, the compiler handles each method call
appropriately. Following are the rules to define Generic Methods:
 All generic method declarations have a type parameter section
delimited by angle brackets (< and >) that precedes the method's return
type (< E > in the next example).

 Each type parameter section contains one or more type parameters
separated by commas. A type parameter, also known as a type variable, is
an identifier that specifies a generic type name.

 The type parameters can be used to declare the return type and act as
placeholders for the types of the arguments passed to the generic method,
which are known as actual type arguments.

 A generic method's body is declared like that of any other method.
Note that type parameters can represent only reference types, not
primitive types (like int, double and char).

 Example:
Following example illustrates how we can print an array of different type
using a single Generic method:

public class GenericMethodTest
{ // generic method printArray
 public static < E > void printArray(E[] inputArray)
 {// Display array elements
 for (E element : inputArray){
 System.out.printf("%s ", element);
 }
 System.out.println();
 }
 public static void main(String args[])
 {// Create arrays of Integer, Double and Character
 Integer[] intArray = { 1, 2, 3, 4, 5 };

Advanced object oriented programming Dr.Yusra Malik

58

 Double[] doubleArray = { 1.1, 2.2, 3.3, 4.4 };
 Character[] charArray = { 'H', 'E', 'L', 'L', 'O' };

 System.out.println("Array integerArray contains:");
 printArray(intArray); // pass an Integer array

 System.out.println("\nArray doubleArray contains:");
 printArray(doubleArray); // pass a Double array

 System.out.println("\nArray characterArray contains:");
 printArray(charArray); // pass a Character array
 }
}

output:
Array integerArray contains:
1 2 3 4 5 6

Array doubleArray contains:
1.1 2.2 3.3 4.4

Array characterArray contains:
H E L L O

 Generic Classes:
 Let’s begin with a simple example of a generic class. The following
program defines two classes. The first is the generic class Gen, and the
second is GenDemo, which uses Gen.
The generics syntax shown in the preceding examples can be generalized.
Here is the syntax for declaring a generic class:
 class class-name<type-param-list> { // ...
Here is the syntax for declaring a reference to a generic class:
 class-name<type-arg-list>var-name=new class-name<type-arg-list>(cons-arg-list);

Example:
// A simple generic class. Here, T is a type parameter that will be replaced
by a real type when an object of type Gen is created.
class Gen<T> {
 T ob;
// declare an object of type T Pass the constructor a reference to an object of type T.
Gen(T o) {

Advanced object oriented programming Dr.Yusra Malik

59

 ob = o;}
 // Return ob.
T getob() {
 return ob;}
// Show type of T.
void showType() {
 System.out.println("Type of T is " +ob.getClass().getName());
// Demonstrate the generic class.
 }}
class GenDemo {
 public static void main(String args[]) {
 // Create a Gen reference for Integers.
 Gen<Integer> iOb;
 /* Create a Gen<Integer> object and assign its reference to iOb. Notice the use of
autoboxing to encapsulate the value 88 within an Integer object.*/
 iOb = new Gen<Integer>(88);
 // Show the type of data used by iOb.
 iOb.showType();
 // Get the value in iOb. Notice that no cast is needed.
 int v = iOb.getob();
 System.out.println("value: " + v);
 System.out.println();
// Create a Gen object for Strings.
 Gen<String> strOb = new Gen<String>("Generics Test");
// Show the type of data used by strOb.
 strOb.showType();
// Get the value of strOb. Again, notice
// that no cast is needed.
String str = strOb.getob();
System.out.println("value: " + str);
}}
UoutputU:
Type of T is java.lang.Integer
value: 88
Type of T is java.lang.String
value: Generics Test

Let’s examine this program carefully.
First, notice how Gen is declared by the following line:

class Gen<T> {
Here, T is the name of a type parameter. This name is used as a
placeholder for the actual type that will be passed to Gen when an object

Advanced object oriented programming Dr.Yusra Malik

60

is created. Thus, T is used within Gen whenever the type parameter is
needed. Notice that T is contained within <>. This syntax can be
generalized. Whenever a type parameter is being declared, it is specified
within angle brackets. Because Gen uses a type parameter, Gen is a
generic class, which is also called a parameterized type.

 How Generics Improve Type Safety?
 At this point, you might be asking yourself the following question:
Given that the same functionality found in the generic Gen class can be
achieved without generics, by simply specifying Object as the data type
and employing the proper casts, what is the benefit of making Gen
generic? The answer is that generics automatically ensure يضمن the type
safety of all operations involving Gen. In the process, they eliminateيهمل
the need for you to enter casts and to type-check code by hand.
To understand the benefits of generics, first consider the following
program that creates a non-generic equivalent متساويof Gen:

// NonGen is functionally equivalent to Gen but does not use generics.
class NonGen {
Object ob; /* ob is now of type Object Pass the constructor a reference to an object
of type Object*/
NonGen(Object o) {
ob = o;
}
// Return type Object.
Object getob() {
return ob; }
// Show type of ob.
void showType() {
System.out.println("Type of ob is " +ob.getClass().getName());
// Demonstrate the non-generic class.
}}
class NonGenDemo {
public static void main(String args[]) {
NonGen iOb;
// Create NonGen Object and store an Integer in it. Autoboxing still occurs.
iOb = new NonGen(88);
// Show the type of data used by iOb.
iOb.showType();
// Get the value of iOb.
// This time, a cast is necessary.
int v = (Integer) iOb.getob();
System.out.println("value: " + v);
System.out.println();

Advanced object oriented programming Dr.Yusra Malik

61

// Create another NonGen object and
// store a String in it.
NonGen strOb = new NonGen("Non-Generics Test");
// Show the type of data used by strOb.
strOb.showType();
// Get the value of strOb.
// Again, notice that a cast is necessary.
String str = (String) strOb.getob();
System.out.println("value: " + str);
// This compiles, but is conceptually wrong!
iOb = strOb;
v = (Integer) iOb.getob(); // run-time error!
}}

There are several things of interest in this version. First, notice that
NonGen replaces all uses of T with Object. This makes NonGen able to
store any type of object, as can the generic version. However, it also
prevents the Java compiler from having any real knowledge about the
type of data actually stored in NonGen, which is bad for two reasons.
First, explicit casts must be employed to retrieve the stored data.
Second, many kinds of type mismatch errors cannot be found until run
time. Let’s look closely at each problem.

Example:
Following example illustrates how extends is used in a general sense to
mean either "extends" (as in classes) or "implements" (as in interfaces).
This example is Generic method to return the largest of three Comparable
objects:

public class MaximumTest
{
 // determines the largest of three Comparable objects
 public static <T extends Comparable<T>> T maximum(T x, T y, T z)
 {
 T max = x; // assume x is initially the largest
 if (y.compareTo(max) > 0){
 max = y; // y is the largest so far
 }
 if (z.compareTo(max) > 0){
 max = z; // z is the largest now
 }
 return max; // returns the largest object
 }

Advanced object oriented programming Dr.Yusra Malik

62

 public static void main(String args[])
 {
 System.out.printf("Max of %d, %d and %d is %d\n\n",
 3, 4, 5, maximum(3, 4, 5));
 System.out.printf("Maxm of %.1f,%.1f and %.1f is %.1f\n\n",
 6.6, 8.8, 7.7, maximum(6.6, 8.8, 7.7));
 System.out.printf("Max of %s, %s and %s is %s\n","pear",
 "apple", "orange", maximum("pear", "apple", "orange"));
 }
}
output:
maximum of 3, 4 and 5 is 5
maximum of 6.6, 8.8 and 7.7 is 8.8
maximum of pear, apple and orange is pear

 Bounded Type Parameters:

 In the preceding examples, the type parameters could be replaced
by any class type. This is fine for many purposes, but sometimes it is
useful to limit the types that can be passed to a type parameter. For
example, assume that you want to create a generic class that contains a
method that returns the average of an array of numbers. Furthermore, you
want to use the class to obtain the average of an array of any type of
number, including integers, floats, and doubles. Thus, you want to specify
the type of the numbers generically, using a type parameter. To create
such a class, you might try something like this:

// Stats attempts (unsuccessfully) to create a generic class that can compute
// the average of an array of numbers of any given type.
// The class contains an error!
class Stats<T> {
T[] nums; // nums is an array of type T
// Pass the constructor a reference to an array of type T.
Stats(T[] o) {
nums = o;}
// Return type double in all cases.
double average() {
double sum = 0.0;
for(int i=0; i < nums.length; i++)
sum += nums[i].doubleValue(); // Error!!!
return sum / nums.length;
}}

	UNested Classes
	UInner Classes (Non-static Nested Classes)
	Member Inner Class

	Method-local Inner Class
	Anonymous Inner Class
	Anonymous Inner Class as Argument
	display: outer_x = 100
	UStatic Nested Class
	UWrapper Classes in Java
	Example 1: Converting a primitive type to Wrapper object
	Example 2: Converting Wrapper class object to Primitive

	UMultithreading
	3.A thread can be in one of the following states: NEW – A thread that has not yet started is in this state. RUNNABLE – A thread executing in the Java virtual machine is in this state. BLOCKED – A thread that is blocked waiting for a monitor lock is in...
	UMultitasking vs Multithreading vs Multiprocessing vs parallel processing:
	UCreating a thread in Java
	Method 1: Thread creation by extending Thread class
	Method 2: Thread creation by implementing Runnable Interface
	/

	UThread priorities
	Methods: isAlive() and join()
	USynchronization

